Probing the Topology in Band Insulators

نویسندگان

  • Kuang-Ting Chen
  • Patrick A. Lee
چکیده

Topological Insulator is a newly found state of matter. Unlike phases described by the traditional Landau theory of symmetry breaking, the topological phases do not break symmetry, and it is not obvious in which measurable quantity will the topological index manifest itself. In this thesis, our main goal is to understand how topological classification produces measurable consequences in periodic insulators. We first warm up by investigating the charge conjugation invariant insulator in one spatial dimension. We show there are two topological distinct classes and derive an integral formula for the topological index that distinguishes between them. We then show that the topological index appear as a Berry's phase when one adiabatically turns on a electric field. We then study the effective theory induced by this Berry's phase and show that there are measurable consequences. We then generalize the discussion to three spatial dimensions. It is hard to capture the topological terms in the effective theory by conventional perturbation methods. We then introduce a new formalism to calculate properties produced by those topological terms such as the polarization and the magnetization, in a unified way. The formalism is based on a perturbative expansion of the Green's functions in powers of a uniform field strength, instead of the potential. In particular, this formalism allows us to capture the effective action describing the three dimensional topological insulator defined under time reversal symmetry, which previously can only be calculated via pumping. Finally, we discuss measurable consequences from the effective theory, in various different boundary settings. Among the properties we have calculated, we find we can identify part of them as of bulk nature, and some other part of them more as an effect associated with boundaries. For the part that are associated with boundaries, the Maxwell relation in the bulk can be violated. For example, the isotropic orbital magneto-polarizability and the orbital electric-susceptibility are different with periodic boundary conditions. However, they become identical whenever there is a boundary. Thesis Supervisor: Patrick A. Lee Title: Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological crystalline insulators.

The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal sur...

متن کامل

Filling-enforced quantum band insulators in spin-orbit coupled crystals

An early triumph of quantum mechanics was the explanation of metallic and insulating behavior based on the filling of electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for which electron filling forbids such an atomic desc...

متن کامل

Detecting topological phases in cold atoms.

Chern insulators are band insulators which exhibit a gap in the bulk and gapless excitations in the edge. Detection of Chern insulators is a serious challenge in cold atoms since the Hall transport measurements are technically unrealistic for neutral atoms. By establishing a natural correspondence between the time-reversal invariant topological insulator and the quantum anomalous Hall system, w...

متن کامل

Prediction of topological phase transition in X2-SiGe monolayers.

Quantum spin Hall (QSH) insulators exhibit a bulk insulting gap and metallic edge states characterized by nontrivial topology. Here, we used first-principles calculations to investigate the electronic and topological properties of halogenated silicon germanide (X2-SiGe, with X = F, Cl, and Br) monolayers, which we found to be trivial semiconductors with energy band gaps ranging from 500 meV to ...

متن کامل

Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators.

Topological insulators (TIs) are quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The most challenging problem faced by current investigations of these materials is to establish the existence of significant bulk conduction. Here we show how the band structure of topological insulators can be engineered by molecular beam epitaxy...

متن کامل

Emergent quantum confinement at topological insulator surfaces.

Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z(2) topology. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013